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Generalising gauge variance for spherically symmetric 
potentials 
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Faculty of Mathematics, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK 

Received 6 February 1985 

Abstract. We give a group-theoretic construction for a one-parameter family of alternative 
Lagrangians for the problem of a particle moving under a spherically symmetric potential, 
recently discovered by Henneaux and Shepley. We also discuss the question of what 
distinguishes the standard Lagrangian from the others, which is of some importance in 
relation to the quantisation of the hydrogen atom, for example. 

1. Introduction 

Henneaux and Shepley have recently shown (1982) that the Lagrangian describing the 
classical motion of a particle in three-dimensional space moving under the influence 
of a spherically symmetric potential is not uniquely determined, even allowing for 
gauge variance (the addition of a total time derivative) and multiplication by a constant. 
In addition to the usual Lagrangian L given by 

L ( X ,  u)=+ lo l ’ -  V ( r )  r = 1x1 
they find a whole family of Lagrangians depending on one undetermined function of 
two variables. One particularly interesting subfamily is a one-parameter family given 
by 

L,  = L +  yJ/r ’  

where y is a real parameter and J is the magnitude of the angular momentum, J = Ix x U]. 
This study of spherically symmetric systems was motivated by a question by Wigner 

( 1950): do the equations of motion completely determine the commutation relations? 
As Henneaux and Shepley point out, their results raise some awkward questions relating 
to quantisation. Since quantisation procedures rely on a Hamiltonian formulation of 
the classical equations of motion, the existence of alternative Lagrangians for the same 
system, which do not merely differ by a total time derivative, may lead to alternative, 
competing quantisations. Thus, as Henneaux and Shepley show, the Lagrangian L, 
for the Kepler problem leads, when y f 0, to a new quantisation of the hydrogen atom, 
which has the unfortunate feature that there is no degeneracy of the energy levels. It 
is clearly desirable to understand as fully as possible how this excessive freedom of 
choice of Lagrangians arises, in order to formulate some appropriate selection rule 
which picks out the standard Lagrangian L. 
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Henneaux and Shepley obtained their results from a complete analysis of the 
Helmholtz conditions for spherically symmetric systems. We shall describe a very 
different approach to the derivation of the Lagrangian L ,  Our construction is of a 
group-theoretic kind, and reveals that the freedom to add the term y J / r 2  to L is a 
natural extension of the usual gauge freedom, mediated by the action of the rotation 
group. As well as describing the construction in particular and in general, we make 
some remarks about the quantisation problem in the light of our construction. 

2. Construction of the Lagrangians 

Our method is to exploit the spherical symmetry of the system-in other words, its 
invariance under the orthogonal group S0(3)-directly. We shall show that by restrict- 
ing the system to a plane of constant direction of angular momentum in the usual way, 
then adding a total time derivative to the restricted Lagrangian (the only freedom in 
the Lagrangian in the two-dimensional case), and finally using the action of SO(3) to 
reconstruct the entire motion, we obtain the Lagrangians L ,  We begin by recalling 
the group action and the corresponding angular momentum reduction in the case of 
the standard Lagrangian. 

The system has the configuration space E:,  Euclidean 3-space with the origin 
removed, and its velocity space T E ;  is just E ;  x E’.  The group SO(3) acts on T E ;  by 

g E SO(3). g ( x ,  U )  = (gx ,  g o )  

Any Lagrangian of the form 

L(X,  u ) = $ u ~ * -  V ( r )  

is invariant under this action: 

g * L =  L for all g E SO(3). 

It follows that SO(3) is a subgroup of the group of Noether symmetries for the 
problem, which is in turn a subgroup of the group of Lie symmetries of the dynamical 
vector field (see Prince (1983b) for this terminology). Thus r is invariant under 
SO(3). Corresponding to this Noether action of SO(3) we have the conservation of 
angular momentum: the angular momentum function J :  T E ; +  E 3 ,  where J ( x ,  U )  = 
x x U ,  is conserved by r: 

r( J )  = 0 .  

It is moreover equivariant under the action of SO(3): 

J ( g ( x ,  U)) = g J ( x ,  U )  

The constancy of J allows the familiar classical reduction. One chooses a non-zero 
element J of E’ and considers the set of points 

{(x, U )  E TE;IJ(x ,  U )  = 

for all g E SO(3). 

for some k E R, k # 0 }  

= {(x, U )  E T E ~ I x  J = U * J = 0, x x U # O } .  

This is a submanifold of TE: of dimension four, which may be identified as an 
open submanifold of TP, where P is the punctured plane x J = 0, x # 0. It has two 
components; we consider the component with k > 0. We shall use TP’ to denote this 
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four-dimensional submanifold. Now r is tangent to TPt,  and its restriction is the 
Euler-Lagrange field of e, the restriction of L to TP+. Moreover S0(2), the isotropy 
group of J,  acts on P, preserves t and is a symmetry of r. 

The significance of this reduction lies in the fact that the whole dynamics may be 
recovered from TP+, T and by the action of S0(3)-at least so far as the open 
submanifold TEi+ of TEi for which x x U # 0 is concerned. Given any (x, U) E TE:+ 
there is  some g E SO(3) such that g ( x ,  U) E TP+: for there is certainly an element 
g E SO(3) such that g J ( x ,  U) = 0 for some k >  0; but then J ( g ( x ,  U)) = 0 and so 
g ( x ,  U) E TP'. Moreover if g ,  and g ,  both map (x, U) into TP+ then h = g,g;' satisfies 

= j ;  so h E SO(2) and maps TP' to itself. We may therefore define a function i 
on TEit by 

&, 0) = m x ,  U)) 

where g is chosen so that g ( x ,  U) E TPf. Since is invariant under the action of SO(2) 
it does not matter which g is used to map (x, U) into TP+, and so i is well defined. 
It is easy to see that i, like L, is invariant under SO(3); and since i = L = on TPt, 
it follows that i= L everywhere on TEi+. 

first, the resulting 
L will be a new Lagrangian for r, provided that the modification is carried out in a 
suitable way. Thus one may add to L any constant multiple of b (where r, 8 are polar 
coordinates on the punctured plane P )  without affecting the dynamics in P. We set 

If, now, instead of merely reconstructing L from one modifies 

t, = e+ y e  

Then e, is also invariant under the action of S 0 ( 2 ) ,  and we may therefore define a 
function i, on TEit by 

Y E  R. 

i,k, U) = C , ( g ( x ,  U)) 

where g is chosen so that g ( x ,  U) E TP+, as before. In fact, i, so defined is just 
Henneaux and Shepley's L, On TP+, J = r2b, and so 

L, = e+ - yJ / r2  = e+ y r 2 b /  r2 = cy 
Thus L, and i, agree on TP'; and since they are both invariant under SO(3) they 
must be equal everywhere on TE:+. 

We have shown that L,  is obtained by restricting L to TP+, adding a total time 
derivative, and using the action of SO(3) to construct a function on T E P .  In fact the 
Lagrangians L, of the one-parameter family are essentially the only Lagrangians for 
r which can be obtained in this way: consider again the motion on TP+. It is well 
known that the Lagrangian for two-dimensional rotationally symmetric motion is 
unique up to gauge variance. Thus the most general Lagrangian for r on TP' is 

c+j 
where f is a function of r and 8. (We ignore the possibility of multiplying L by a 
constant, since this has the same effect on L.) The new Lagrangian is required to be 
invariant under SO(2) .  Now 

and invariance requires that both aflar and afla8 should be independent of 8. 
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However, then 

and so a f l a e  is actually constant, say a f / a e  = y. Then f - ye = F is a function of r 
alone, and 

f =  F +  ye .  

L + f = L y + F  
Thus 

where F is a function of r alone, and is therefore the restriction to P of a function 
on E: invariant under SO(3). The term F will therefore contribute only a gauge term 
to the Lagrangian on TE:’ constructed from c, + E (Actually, the foregoing argument 
is a little oversimplified: strictly speaking its conclusion should be that iff is a function 
on P with f invariant under SO(2) then f is a function of r alone, since 8 is not a 
well defined function on P. However it makes sense if the definition of a total time 
derivative is relaxed slightly. Given any differentiable manifold M ,  a 1-form w on M 
determines a function 4 on TM linear in the fibre coordinates by G(x, U )  =(U, w x ) .  
Our argument makes sense if a total time derivative-perhaps gauge term would be 
more appropriate here-is interpreted to be a function on TM of the form 4 where 
w is closed, but not necessarily the exterior derivative of any function J )  

3. Towards a general theory 

We now discuss the use of group actions in the construction of Lagrangians in the 
general case. 

Let G be a Lie group of diffeomorphisms of a differentiable manifold X .  We shall 
be concerned with submanifolds of X which have the property of having non-empty 
intersection with every orbit of the action of G on X .  A suitable submanifold with 
this property will serve as an ‘initial data’ submanifold for the determination of objects 
on X which are invariant under the action of G. We say that a submanifold Y of X 
is a section o f the  action of G if the following two conditions hold. 

(i) Every orbit of the action of G on X has non-empty intersection with Y ;  or in 
other words, for every X E  X there is some gE G such that gxE Y. 

(i i)  For all x E X ,  if g,x and g2x both lie in Y then g2g;’ maps the whole of Y 
into itself. 

We call the subgroup H of G which leaves Y invariant its isotropy subgroup. It 
is certainly true that if g,x E Y and g2 = h g ,  with h E H then g2x E Y also. Condition 
(ii) requires that this should be the only possibility. 

When a Lie group G acts as a group of diffeomorphisms of a manifold X there is 
a homomorphism of its Lie algebra 3 into the module of vector fields on X ,  defined 
as follows: for any A E  3 the corresponding vector field A on X is the generator of 
the one-parameter group of diffeomorphisms {exp(tA)}. As well as being a homo- 
morphism (that is, being linear and preserving brackets) the map A+ A satisfies - 

g * A  = (Ad g ) A  for all g E G. 
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For each point x E X ,  the set of vectors of the form A, constitutes a subspace of 
T,X, which we denote YX; it is the tangent space to the orbit of x. If Y is a section 
of the action of G we shall say that a point y E Y is regular if the subspaces T, Y and 
Yly of T,X together span it. 

We specialise now to the case where X = TM is the tangent bundle of a differentiable 
manifold M. We shall be concerned only with actions on TM induced from actions 
on M: thus for each g E G, the diffeomorphism of TM corresponding to g is the 
tangent map of a diffeomorphism of M. The action of G thus preserves the structure 
of TM. In particular it preserves the vertical endomorphism S of TM, which defines 
its almost tangent structure (Crampin 1983a, b). In fact it will be convenient to note 
that this result holds in a more general situation. Let 4 : N + M be a smooth map, 
and @ :  TN + TM its tangent map. Let SN, S, be the vertical endomorphisms of TN, 
TM respectively. Then 

@* 0 S N  = s, 0 @** 

For any function A on TM we define its Cartan 1-form 8A by 

Oh = dA 0 S,, 

It follows that 0 * 8 ,  is a Cartan 1-form on TN, namely the Cartan 1-form correspond- 
ing to @*A. Thus when a Lie group G acts on TM and its action is induced from one 
on M, then if A is a function on TM invariant under the action, its Cartan 1-form 8 A  
is also invariant, in the sense that 

g * 8 ,  = 8 A  for all g E G. 

Furthermore a tangent map 0 :  TN + TM satisfies 

0 0  a;"= S;"o 0 

where Sf"(S;") is the one-parameter group of dilations of the fibres of TM(TN).  It 
follows that 

@,AN = A M I a c N ,  

where A M ( A N )  is the dilation vector field on TM( TN).  In the case of a group action 
(or any diffeomorphism) on M the dilation vector field is invariant. 

Suppose now that r is a second-order differential equation field on TM, and that 
there is an embedded submanifold N of M such that is tangent to TN. Suppose 
that the Lie group G acts as a group of Lie symmetries of r: in other words, G acts 
on TM, its action being induced from one on M, and for each g e  G 

g,r = r 
Suppose that TN is a section of the action of G, and let its isotropy group be H. 

We shall show that the construction of the previous section can be generalised to apply 
in this situation, but only so as to apply to the regular points of TN. Let TN+ be the 
set of regular points of TN, and TM+ its image in TM under the action of G. We 
shall use T to denote the restriction of to TN'. Suppose that there is a Lagrangian 

is invariant under H. Define 
a function L on TM' by 

for T (so is a function on TN'); suppose also that 

U P )  = &P) 
where p E TM+ and g E G is such that g p  E TN+;  the invariance of L ensures that L 



2172 M Crampin and G E Prince 

is well defined. We show that provided one additional condition is satisfied, L is a 
Lagrangian for r on TM+. 

Theorem. Under the conditions described above, if for every A E  9 the restriction to 
TN+ of the function (A, 0,) (where O L  is the Cartan 1-form of L )  is conserved by r 
then L is a Lagrangian for r on TM+;  it is invariant under G, and is the unique 
Lagrangian for r invariant under G which agrees with i on TN+.  

ProoJ: To show that L is a Lagrangian for r on TM+ we must show that 

irdOL=-dEL 

where 

E L = A L - L  

is the energy, A being the dilation field on TM. Now L is invariant under the action 
of G: for if p E TM+ and g’ E G is such that g’p E TN’, then for g E G the group 
element g’g-’ maps gp into TN’ and so 

L k P )  = C ( ( g ’ g - ’ ) ( g p ) )  = W P )  = U P ) .  
The action of G therefore preserves 0,; and since it leaves A invariant it also preserves 
EL. It preserves r by assumption. Thus the 1-form ir dOL+dEL is invariant under the 
action of G, and so it is sufficient to show that it vanishes at every point of TN+ in 
order to show that it vanishes everywhere on TM+. Our discussion above about the 
behaviour of Cartan 1-forms and dilation fields, applied to the embedding of ,TN+ in 
TM+, shows that the restriction of ir dBL+dEL to T N +  is just i f .  de,-+ dE,-; ‘restriction’ 
here means restriction of the arguments of the 1-form to be tangent to TN+. But this 
restriction vanishes since, by assumption, is a Lagrangian for r. It remains to be 
shown that ir dBL+dEL vanishes at points of T N +  when its arguments are transverse 
to TN+. Since TN+ consists of regular points, it is enough to consider the evaluation 
of the 1-form on a vector field of the form A, where A E  3. Now since the action of 
G on TM is induced from an action on M, and since L is invariant, we have 

22s = 0 [A, A ]  = 0 A L  = 0. 

AE, = o TieL = 0. 

It follows that 

From the second of these, 

i A  deL = - d ( i ,  O L ) .  

(A, i rdeL+dEL)= -(r, iadeL)+A‘EL=T(A, eL)  
Thus 

and on TN+ this vanishes since by assumption (A, 0‘) is conserved by r. It follows that 

ir dOL = -dEL 

on TM+, as required. Now any function on TM+ invariant under the action of G is 
determined by its values on a section of the action; so L is the unique G-invariant 
Lagrangian which agrees with on TN+. 
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This result implies that in the case of a spherically symmetric system the only 
spherically symmetric Lagrangians on TEi+ are those of the one-parameter family L,. 
We can now explain the significance of the condition x X U # 0: it identifies the regular 
points of TP. For suppose that coordinates (x' ,  x2, x3) are chosen in E 3  with p as the 
plane x3 = 0. If ( U ' ,  u2,  u 3 )  are the corresponding fibre coordinates in TE3 then the 
generators of rotations about the x1  and x2 axes induce on TP the vector fields 

These will be linearly independent except when 

x2u'  - x1v2 = 0,  

x x U = (xl, x2, 0) x ( u l ,  u2,  0 )  = o .  
that is, except when 

Our construction gives a Lagrangian only on TEi+, the open submanifold of T E i  
obtained from TP+ by the action of SO(3). Note that this is a significant restriction, 
since the function J is not smooth at J = 0; only in the case of the standard Lagrangian 
( y = 0) is it possible to extend L,  smoothly to the whole of TE;. 

The condition on (A, e,) arises from the fact that when G acts in the manner 
described, this quantity is the constant of the motion- associated with A by Noether's 
theorem. Thus it is certainly to be expected that ( A ,  e,) will be conserved by T on 
TN+;  and this proves to be a sufficient assumption to allow one to transfer the 
information on TN+ into the surrouncing space. Of course when A belongs to the 
Lie algebra of H the constancy of (A ,  e,) on TN+ is automatic. In the case of a 
spherically symmetric system this quantity is actually identically zero on TP+ when A 
is a generator of rotations about an axis in P, since it is a multiple of the component 
of angular momentum in the direction of that axis. 

When (as in the case of a spherically symmetric potential) one Lagrangian is already 
known and is invariant under a Lie group G acting as Lie symmetries, it may be 
possible to use the corresponding constants of the motion to construct a section of the 
action. For each A E  % we set 

2 A  = 

where L is the known Lagrangian; then 9A is a function on TM and is a constant of 
the motion. Moreover depends linearly on A. Thus for each P E  TM the map 
% + R by A + $A( p )  is linear, and therefore defines an element of %*, the vector space 
dual to 3. We may therefore define a map 9 : TM -+ %* by 

( A ,  2 ( p ) ) = $ A ( P )  =(A, e L ) p  for all A E %. - 
From the fact that g , A  = (Ad g ) A  it follows that 9 is equivariant under the action of 
G on TM and its co-adjoint action on %*: 

9 k P )  = (Ad g - 1 ) * 9 ( P ) .  

The map 9 is called the momentum map associated with the action of G (Weinstein 1977, 
lecture 4). 

Now suppose that Y is a subspace of %* which is a section of the co-adjoint action. 
Suppose that, as a homomorphism of G into the automorphism group of %, Ad is 
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injective. Then the inverse image B- l (Y)  c TM is a section of the action of G on TM. 
For given any P E  TM there is some g e G  such that (Ad g - ' )*B(p)EY;  but then 
2 ( g p ) E Y  and so gpEdt- '(Y).  If both g l p E B - ' ( Y )  and  g z p e B - ' ( 9 )  then both 
(Ad g;')*2( p )  E 9 and (Ad si ' )*$( p )  E 9, and therefore 

(Ad g;')*(Ad g,)* = (Ad A-')* 

M Crampin and  G E Prince 

for some h E H,  the isotropy subgroup of Y. But then 

Ad(g2g;') = A d  h and so g,g;' = h. 

(The injectivity assumption covers the SO(3) case; a more general result could be 
obtained by factoring out the kernel of Ad, which is the centre of G, from the co-adjoint 
action.) 

4. The quantisation problem 

The problem that the non-uniqueness of Lagrangians raises for quantisation is that 
different Lagrangians may lead to different quantum theories for the same system. One 
needs to know, therefore, how to pick out at  the start the Lagrangian which will give 
the correct quantum mechanics. This cannot be done on a phenomenological basis at  
the classical level. However, our discussion above does identify a couple of factors 
which single out the standard Lagrangian in the case of a spherically symmetric system. 
In the first place it would seem natural to require that the Lagrangian itself should be 
spherically symmetric: this forces it to be of the form L ,  However if we then require 
the Lagrangian to be smooth all over TE; and  not just on TEA+-in other words if 
we require it to govern radial motion-then the standard Lagrangian is the only 
possibility. There is some prospect that similar considerations may apply in other 
highly symmetric situations; and it seems likely that a high degree of symmetry is 
necessary for there to be an  oversupply of Lagrangians-Henneaux and Shepley (1982) 
have pointed out that the introduction of some anisotropy destroys this feature of 
spherically symmetric systems. 

In the particular case of the hydrogen atom there are additional considerations. 
Henneaux and  Shepley showed that when quantisation of the hydrogen atom is carried 
out starting from a non-standard Lagrangian there is no longer the usual degeneracy 
of the energy levels. Now the degeneracy of the energy levels is associated with the 
so-called hidden symmetries of the system. In the classical picture these hidden 
symmetries are associated with the constancy of the Runge-Lenz vector. There are 
two ways of relating the Runge-Lenz vector to symmetries of the system. One is 
through the Noether-Cartan theorem, which associates a symmetry vector field with 
every conserved quantity. In the case of the Runge-Lenz vector this procedure, used 
with the standard Lagrangian, yields symmetry vector fields on TE; which are not Lie 
symmetries but are derived from the rank-2 Killing tensors of the Euclidean metric in 
a natural way (Crampin 1984). This natural geometrical structure of the hidden 
symmetries does not appear to survive the modification of the Lagrangian. The second 
approach to the Runge-Lenz vector is to generate it from a Lie symmetry of the 
dynamical vector field in a way which is essentially independent of the Cartan structure 
(Prince and  Eliezer 1981). The Lie symmetry in question is one associated with Kepler's 
third law; its generator is the vector field 2 on evolution space R x TE; ( R  for time) 
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given in the usual coordinates by 

(Prince 1983a). According to the theory developed by Prince (Prince 1983b, Crampin 
and Prince 1985) such a Lie symmetry vector field which does not preserve a Lagrangian 
may be used to generate a new one by Lie differentiation. Once again the standard 
Lagrangian occupies a distinguished position: it is in effect a fixed point of the action 
of Z in this construction. We find that 

2 2 L y -  --2L 3 y -1 3 Y J l r 2 = - 3 L 3 y ! 2 .  

Thus when y = 0 the Lagrangian changes only by multiplication by a constant; other- 
wise, the action of Z produces a change of parameter value as well. 

In this aspect of the problem it is the relation between Lie and Cartan symmetries 
of the system which is at issue, and this again depends on the choice of Lagrangian 
in a rather complicated way. It seems that in the case of the hydrogen atom the 
interaction between Lie and Cartan symmetries is simplest for the standard Lagrangian. 
However, these are topics for further investigation. 

Finally our construction, which derives the alternative spherically symmetric 
Lagrangians from gauge variance via the group action, holds out some hope that it 
may be possible to modify the quantisation procedure (which after all ignores gauge 
terms) when a group of Lie symmetries acts so as to ignore all deviations from the 
standard Lagrangian. 
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